OK, here's another psutil release. Main highlights of this release are sensors-related APIs.
Temperatures¶
It is now possible to retrieve hardware temperatures. The relevant commit is here. Unfortunately this is Linux only. I couldn't manage to implement this on other platforms mainly for two reasons:
- On Windows it is hard to do this in a hardware agnostic fashion. I bumped into 3 different approaches, all using WMI, and none of them worked with my hardware so I gave up.
- On OSX it appears it is possible to retrieve temperatures relatively easy, but I have a virtualized OSX box which does not support sensors, so basically I gave up on this due to lack of hardware. If somebody wants to give it a try be my guest.
>>> import psutil
>>> psutil.sensors_temperatures()
{'acpitz': [shwtemp(label='', current=47.0, high=103.0, critical=103.0)],
'asus': [shwtemp(label='', current=47.0, high=None, critical=None)],
'coretemp': [shwtemp(label='Physical id 0', current=52.0, high=100.0, critical=100.0),
shwtemp(label='Core 0', current=45.0, high=100.0, critical=100.0),
shwtemp(label='Core 1', current=52.0, high=100.0, critical=100.0),
shwtemp(label='Core 2', current=45.0, high=100.0, critical=100.0),
shwtemp(label='Core 3', current=47.0, high=100.0, critical=100.0)]}
Battery status¶
This works on Linux, Windows and FreeBSD and provides battery status information. The relevant commit is here.
>>> import psutil
>>>
>>> def secs2hours(secs):
... mm, ss = divmod(secs, 60)
... hh, mm = divmod(mm, 60)
... return "%d:%02d:%02d" % (hh, mm, ss)
...
>>> battery = psutil.sensors_battery()
>>> battery
sbattery(percent=93, secsleft=16628, power_plugged=False)
>>> print("charge = %s%%, time left = %s" % (batt.percent, secs2hours(batt.secsleft)))
charge = 93%, time left = 4:37:08
CPU frequency¶
Available under Linux, Windows and OSX. Relevant commit is here. Linux is the only platform which reports the real-time value (always changing), on all other platforms current frequency is represented as the nominal “fixed” value.
>>> import psutil
>>> psutil.cpu_freq()
scpufreq(current=931.42925, min=800.0, max=3500.0)
>>> psutil.cpu_freq(percpu=True)
[scpufreq(current=2394.945, min=800.0, max=3500.0),
scpufreq(current=2236.812, min=800.0, max=3500.0),
scpufreq(current=1703.609, min=800.0, max=3500.0),
scpufreq(current=1754.289, min=800.0, max=3500.0)]
What CPU a process is on¶
This will let you know what CPU number a process is currently running on, which is somewhat related to the existent cpu_affinity() functionality. The relevant commit is here. It is interesting to use this method to visualize how the OS scheduler continuously evenly reassigns processes to different CPUs (see cpu_distribution.py script).
CPU affinity¶
A new syntax can now be used as an alias for "set affinity against all eligible CPUs".
Process().cpu_affinity([])
This was implemented because it turns out on Linux it is not always possible to set affinity against all CPUs. Having such an alias is also a shortcut to avoid doing this, which is kinda verbose:
psutil.Process().cpu_affinity(list(range(psutil.cpu_count())))
Comments